网站新闻

当前位置:主页 > 网站新闻 >

生物质发电“十三五”规划布局方案

时间:2018-08-29 10:00 作者:admin 点击:

   北极星固废网讯:生物质能源是受到人们重新关注的可再生能源形式之一,生物质发电是生物质能开发的最主要利用形式之一,发电方式主要可分为直接燃烧发电、气化发电和耦合发电三种方式。
  针对生物质发电项目,我国2006年推出了标杆电价+补贴电价的优惠政策;2010年和2012年,农林生物质发电和垃圾焚烧发电分别执行0.75元和0.65元的标杆电价。电价政策优惠明显,生物质发电项目快速发展。发改委、农业部、林业局、能源局、环保部等部门也先后出台了多项关于生物质利用的规划。国家能源局在《生物质发电“十三五”规划布局方案》中规划了生物质发电规模合计2,334万千瓦的发展目标。截至2017年底,全国并网装机容量1,476.2万千瓦,全球范围仅次于美国的1,670万千瓦装机规模。
  农林生物质发电方面,目前生物质气化后发电、与燃煤机组耦合发电、充分利用林业生物质等是主要的发展动向。其环境效益主要体现传统大气污染物排放相对较低,排放烟气中SO2、NOx含量较低,同时生物质能源可再生、节约了化石燃料的使用,且生物质发电为碳中性,其节能减排的环境效益明显。评估农林生物质发电项目的绩效表现时,可从机组发电效率/锅炉效率、燃料的收集与制备、污染物的排放情况、机组的利用小时数以及生物质发电的环境影响等方面进行综合评估。
  预期未来以装机规模不太大的分布式生物质热电联产为形式的能源开发模式和项目建设,可协同解决小型城镇和城乡居住区的包括居民取暖在内的热力供应,并实现电力生产,消纳周边农林地区生物质,有效降低采暖期的化石燃料消耗和污染排放,并减少农林生物质散烧带来的负面环境影响。
  生物质能源是人类最早加以利用的能源形式,包括人类早期的钻木取火、农耕文明时间的薪柴燃料,均是直接取自大自然生物圈或者农业生产产生的生物质资源。人类进入工业化时代后,开始大规模地利用煤炭、石油和天然气等化石能源用以支持社会经济发展,生物质能源此时在能源供给中的重要性不比以往;而随着化石能源广泛使用后产生的种种生态环境及气候变化问题出现后,人类又重新审视能源结构的合理性与可持续性,新能源和可再生能源日渐受到重视,而生物质能源又重新受到人们的关注。
  一、生物质的基本概念
  1.1 生物质
  生物质是指通过光合作用而形成的各种有机体。生物质能是太阳能以化学能形式贮存在生物质中的能量形式,它以生物质为载体,直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,替代煤炭,石油和天然气等化石燃料,可永续利用,具有环境友好和可再生双重属性,发展潜力巨大。
  通常意义上,广义的生物质,包括动植物、微生物及其产生的废弃物,狭义的生物质通常指是秸秆、木质纤维等此类的农林型生物质。实际操作中,在我国能源部门的生物质发电项目统计口径中,即包括了农林生物质发电、垃圾焚烧发电和沼气发电;包含了大量生物质的城乡生活垃圾的减量化和资源化,也被视为生物质利用的一种途径。
  生物质能的研究开发,主要有物理转换、化学转换、生物转换三大类,涉及到气化、液化、热解、固化和直接燃烧等技术。生物质直接燃烧发电、或者生物质进行气化之后进行发电,是生物质能利用的重要方式之一。
  1.2 生物质发电
  世界上最早的生物质发电起源于20世纪70年代,当时因为世界性的石油危机爆发,丹麦为缓解危机带来的能源压力,率先大力推行秸秆等生物质发电技术,1990年以后,生物质发电在欧美许多国家也得到大力发展。生物质发电方式主要可分为直接燃烧发电、气化发电和耦合发电三种方式。直接燃烧发电分为农林废弃物直接燃烧发电、垃圾焚烧发电等;气化发电可分为农林废弃物气化发电、垃圾填埋气发电、沼气发电等;耦合发电是生物质与其他燃料结合的发电技术(王刚,曲红建,吕群.我国生物质气化耦合发电技术及应用探讨[J].中国环保产业,2018(01):16-19)。
  1.3 本研究的主要研究对象
  《绿色债券支持项目目录》(以下简称《目录》)中“3.6生物质资源回收利用”是指:农业秸秆、林业废弃物、城乡生活垃圾等生物质废弃物资源化利用装置/设施建设运营。包含但不限于以下类别:非粮生物质液体燃料生产装置/设施、农林生物质发电、供热装置/设施、生物燃气生产装置/设施、城乡生活垃圾资源化利用装置/设施等。
  本研究主要关注农林生物质发电和供热装置/设施。包括垃圾焚烧在内的生活垃圾资源化、非粮生物质液体燃料生产、生物燃气生产等,由于涉及的行业类型不同、应用技术差异较大,将在其他研究中开展。我国甲醇生产技术成熟,产能巨大,化学转化可将甲醇一步转化为短链烯烃等化学品和燃料,但是产品种类有限,特别难合成长链或结构复杂的化学品。生物转化具有条件温和、过程绿色环保和产品种类丰富等优点,通过代谢工程改造工业平台微生物,实现生物转化甲醇合成化学品,是国内外的研究热点。但是,目前经过改造的工业平台微生物仍然利用糖类作为主要碳源,甲醇仅作为辅助碳源,限制了甲醇生物转化利用。
  近日,中国科学院天津工业生物技术研究所研究员郑平带领的系统与合成生物技术研究团队和研究员孙际宾带领的系统生物学中心研究团队合作,理性设计并构建了高效利用甲醇的甲醇依赖型谷氨酸棒杆菌,实现转化甲醇合成谷氨酸。通过阻断戊糖磷酸途径,引入核酮糖单磷酸甲醇利用途径,使甲醇-木糖共利用成为菌株生长的必要条件,实现了甲醇依赖型菌株生长。由于甲醇利用速度与细胞生长速度正相关,通过适应性进化,大幅提高了菌株的生长速度和甲醇利用速度,甲醇:木糖利用比例达到3.83:1,13C标记实验表明代谢物中多至63%的碳来自甲醇,甲醇成为细胞生长代谢的主要碳源。通过抑制细胞壁合成,还实现了转化甲醇合成谷氨酸。该研究为构建可利用甲醇作为唯一碳源的工业平台菌株,实现高效的甲醇生物转化利用奠定了基础。
  该研究得到国家自然科学基金、中科院重点部署项目、中科院国际合作局对外合作重点项目、天津市青年拔尖人才计划和天津市特支计划项目的支持,相关研究成果已经发表在期刊Metabolic Engineering上。天津工生所博士生Philibert Tuyishime和助理研究员王钰为论文的共同第一作者。